具有非线性传染率及脉冲免疫接种的SIQR传染病模型An SIQR Epidemic Model with Nonlinear Incidence Rate and Impulsive Vaccination
邢伟;高晋芳;颜七笙;周其华;
摘要(Abstract):
本文研究了具有非线性传染率及脉冲免疫接种的SIQR模型,采用非线性传染率βI(t)(1+vI(t))S(t)得到了疾病流行与否的阈值,并且利用Floquet定理及比较定理证明了无病周期解的存在性与全局渐近稳定性,最后讨论了系统疾病一致持续的充分条件。研究结果表明:当参数满足一些条件时,疾病永久存在不会消亡,丰富了传染病动力学的理论知识。
关键词(KeyWords): 非线性传染率;SIQR模型;全局渐近稳定性;一致持续
基金项目(Foundation): 国家自然科学基金(11661005);; 江西省高等学校教学改革研究项目(JXJG-15-6-22);; 江西省教育厅科学技术研究项目(GJJ14469)
作者(Authors): 邢伟;高晋芳;颜七笙;周其华;
DOI: 10.16088/j.issn.1001-6600.2017.02.009
参考文献(References):
- [1]TIAN Yanni,LIU Xianning.Global dynamics of a virus dynamical model with general incidence rate and cure rate[J].Nonlinear Analysis:Real World Applications 2014,16:17-26.DOI:10.1016/j.nonrwa.2013.09.002.
- [2]MENG Xinzhu,CHEN Lansun.Global dynamical behaviors for an SIR epidemic model with time delay and pulse vaccination[J].Taiwanese Journal of Mathematics,2008,12(5):1107-1122.
- [3]MENG Xinzhu,CHEN Lansun.The dynamics of a new SIR epidemic model concerning pulse vaccination strategy[J].Applied Mathematics and Computation,2008,197(2):582-597.DOI:10.1016/j.amc.2007.07.083.
- [4]赵文才,孟新柱.具有垂直传染的SIR脉冲预防接种模型[J].应用数学,2009,22(3):676-682.
- [5]宋燕,刘薇,张宇.具有垂直传染及脉冲免疫接种的SIQR传染病模型[J].兰州大学学报(自然科学版),2014,50(2):251-254.DOI:10.13885/j.issn.0455-2059.2014.02.002.
- [6]靳祯,马知恩.具有连续和脉冲预防接种的SIRS传染病模型[J].华北工学院学报,2003,24(4):235-243.
- [7]邢伟,颜七笙,杨志辉,等.一类具有非线性传染率的SEIS传染病模型的稳定性分析[J].应用数学和力学,2016,37(11):1247-1254.DOI:10.21656/1000-0887.370166.
- [8]Van den DRIESSCHE P,WATMOUGH J.A simple SIS epidemic model with a backward bifurcation[J].Journal of Mathematical Biology,2000,40(6):525-540.DOI:10.1007/s002850000032.
- [9]Van den DRIESSCHE P,WATMOUGH J.Epidemic solutions and endemic and endemic catastrophes[M]//RUAN Shigui,WOLKOWICZ G S K,WU Jianhong.Dynamical System and Their Application in Biology:Fields Institute Communications Volume 36.Providence,RI:AMS,2003:247-257.
- [10]ALEXANDER M E,MOGHADAS S M.Periodicity in an epidemic model with a generalized non-linear incidence[J].Mathematical Biosciences,2004,189(1):75-96.DOI:10.1016/j.mbs.2004.01.003.
- [11]肖燕妮,周义仓,唐三一.生物数学原理[M].西安:西安交通大学出版社,2012:225-240.