面向强化当前兴趣的图神经网络推荐算法研究Research on Graph Neural Network Recommendation Algorithms for Reinforcing Current Interest
孔亚钰;卢玉洁;孙中天;肖敬先;侯昊辰;陈廷伟;
摘要(Abstract):
在基于会话的推荐中,与传统序列建模相比,将会话序列建模为图结构在该领域表现得更为出色。但是,现有的研究方法仅利用图结构来挖掘项目之间转换特性,以此捕获用户当前兴趣的能力有限。本文提出一种面向强化当前兴趣的图神经网络推荐算法,通过引入位置嵌入,并与图神经网络相结合,从而互补顺序感知模型和图形感知模型的优势。会话序列被建模为图结构,并取原始序列的最后一次点击,通过多头注意力机制计算其对图节点信息的注意力权重,以更加准确地获取用户当前兴趣的表示。同时,在2个真实的数据集上进行验证实验,结果表明本文提出的方法实现了所有方法的最佳性能,特别是在Diginetica数据集上,所有评价指标都提升了7%以上,MRR@10指标甚至提升了9.52%,证明本文所提方法对基于会话推荐的正确性和有效性。
关键词(KeyWords): 基于会话的推荐;会话图;图神经网络;多头注意力机制;位置嵌入
基金项目(Foundation): 国家自然科学基金(61802160)
作者(Authors): 孔亚钰;卢玉洁;孙中天;肖敬先;侯昊辰;陈廷伟;
DOI: 10.16088/j.issn.1001-6600.2021071405
参考文献(References):
- [1] SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International Conference on World Wide Web.New York:ACM,2001:285-295.
- [2] SHANI G,HECKERMAN D,BRAFMAN R I.An MDP-based recommender system[J].Journal of Machine Learning Research,2005,6:1265-1295.
- [3] TAN Y K,XU X X,LIU Y.Improved recurrent neural networks for session-based recommendations[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.New York:ACM,2016:17-22.
- [4] 祁明明,马文明,单荣杰.基于循环神经网络的旅游地点推荐系统设计与实现[J].电子技术与软件工程,2020(1):184-185.
- [5] 纪强.基于循环神经网络的深度推荐模型研究[D].合肥:安徽大学,2020.
- [6] LIU Q,ZENG Y F,MOKHOSIR,et al.STAMP:short-term attention/memory priority model for session-based recommendation[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2018:1831-1839.
- [7] SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE Transactions on Neural Networks,2009,20(1):61-80.
- [8] WU S,TANG Y Y,ZHU Y Q,et al.Session-based recommendation with graph neural networks[C]// Proceedings of the AAAI Conference on Artificial Intelligence.California:AAAI,2019:346-353.
- [9] LI Y J,ZEMEL R,BROCKSCHMIDT M,et al.Gated graph sequence neural networks[EB/OL].(2016-05-03)[2021-09-09].https://www.microsoft.com/en-us/research/wp-content/uploads/2015/11/1511.05493.pdf.
- [10] XU C F,ZHAO P P,LIU Y C,et al.Graph contextualized self-attention network for session-based recommendation[C]// Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence.California:IJCAI,2019:3940-3946.
- [11] RENDLE S,FREUDENTHALER C,GANTNER Z.BPR:Bayesian personalized ranking from implicit feedback[C]// Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.New York:ACM,2009:452-461.
- [12] RENDLE S,FREUDENTHALER C,SCHMIDT-THIEME L.Factorizing personalized markov chains for next-basket recommendation[C]// Proceedings of the 19th International Conference on World wide web.New York:ACM,2010:811-820.
- [13] HIDASI B,KARATZOGLOU A,BALTRUNAS L,et al.Session-based recommendations with recurrent neural networks[EB/OL].(2016-03-29)[2021-09-09].https://arxiv.org/abs/1511.06939.
- [14] ZHANG Y Y,DAI H J,XU C,et al.Sequential click prediction for sponsored search with recurrent neural networks[C]// Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence.New York:ACM,2014:1369-1375.
- [15] LI J,REN P J,CHEN Z M,et al.Neural attentive session-based recommendation[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.New York:ACM,2017:1419-1428.
- [16] WANG P F,GUO J F,LAN Y Y,et al.Learning hierarchical representation model for next basket recommendation[C]// Proceedings of the 38th International ACM SIGIR conference on Research and Development in Information Retrieval.New York:ACM,2015:403-412.
- [17] YANARDAG P,VISHWANATHAN S V N.Deep graph kernels[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2015:1365-1374.
- [18] MICHELI A.Neural network for graphs:a contextual constructive approach[J].IEEE Transactions on Neural Networks,2009,20(3):498-511.
- [19] YU F,ZHU Y Q,LIUQ,et al.TAGNN:target attentive graph neural networks for session-based recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2020:1921-1924.
- [20] CHEN T W,WONG R C W.Handling information loss of graph neural networks for session-based recommendation[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2020:1172-1180.
- [21] 孙鑫,刘学军,李斌,等.基于图神经网络和时间注意力的会话序列推荐[J].计算机工程与设计,2020,41(10):2913-2920.
- [22] 南宁,杨程屹,武志昊.基于多图神经网络的会话感知推荐模型[J].计算机应用,2021,41(2):330-336.
- [23] 任俊伟,曾诚,肖丝雨,等.基于会话的多粒度图神经网络推荐模型[J].计算机应用,2021,41(11):3164-3170.
- [24] KANG W C,MCAULEY J L.Self-attentive sequential recommendation[C]// 2018 IEEE International Conference on Data Mining(ICDM).Piscataway,NJ:IEEE,2018:197-206.
- [25] JI W D,WANG K Q,WANG X L,et al.Hybrid sequential recommender via time-aware attentive memory network[EB/OL].(2020-05-18)[2021-09-09].https://arxiv.org/pdf/2005.08598v1.