基于高效通道注意力的UNet肺结节CT图像分割CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention
万黎明;张小乾;刘知贵;宋林;周莹;李理;
摘要(Abstract):
肺癌是全球死亡率最高的癌症之一,肺结节作为肺癌早期诊断的重要依据,对其进行精准分割格外重要。为了帮助医生诊断肺部病变,本文提出一种改进的UNet肺结节分割方法。首先,在特征提取部分引入高效通道注意力网络(efficient channel attention for deep convolutional neural networks, EcaNet),提高UNet分割效果,使其具有良好的泛化能力。接着,为了降低模型参数量、提升算法分割性能,提出一种基于深度可分离卷积的特征融合模型,用深度可分离卷积代替传统卷积完成特征融合。然后,针对肺结节图像特点,将基于重叠度损失函数(dice loss)与加权交叉熵(weighted cross entropy, WCE)结合作为新的损失函数。最后,为验证所提算法Eca-UNet的有效性,在LIDC-IDRI肺结节公开数据集上进行评估。结果表明:Eca-UNet算法在DICE相似系数、MIOU上比UNet分割算法分别提高10.47、7.34个百分点;同时在训练速度上提升了10.10%,预测速度提升了11.56%。
关键词(KeyWords): 图像分割;肺结节CT图像;注意力机制;UNet;残差网络
基金项目(Foundation): 国家自然科学基金(61772272,62102331)
作者(Authors): 万黎明;张小乾;刘知贵;宋林;周莹;李理;
DOI: 10.16088/j.issn.1001-6600.2021071202
参考文献(References):
- [1] 赫捷,李霓,陈万青,等.中国肺癌筛查与早诊早治指南(2021,北京)[J].中华肿瘤杂志,2021,43(3):243-268.DOI:10.3760/cma.j.cn112152-20210119-00060.
- [2] 钟思华,郭兴明,郑伊能.改进U-Net网络的肺结节分割方法[J].计算机工程与应用,2020,56(17):203-209.DOI:10.3778/j.issn.1002-8331.1911-0124.
- [3] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015.Cham:Springer,2015:234-241.DOI:10.1007/978-3-319-24574-4_28.
- [4] 易三莉,陈建亭,贺建峰.ASR-UNet:一种基于注意力机制改进的视网膜血管分割算法[J].山东大学学报(理学版),2021,56(9):13-20.DOI:10.6040/j.issn.1671-9352.0.2020.655.
- [5] 王海鸥,刘慧,郭强,等.面向医学图像分割的超像素U-Net网络设计[J].计算机辅助设计与图形学学报,2019,31(6):1007-1017.
- [6] ZHANG Y,CHEN K T,CHANG K T,et al.Automatic breast and fibroglandular tissue segmentation in breast MRI using deep learning by a fully-convolutional residual neural network U-Net[J].Academic Radiology,2019,26(11):1526-1535.DOI:10.1016/j.acra.2019.01.012.
- [7] 王磐,强彦,杨晓棠,等.基于双注意力3D-UNet的肺结节分割网络模型[J].计算机工程,2021,47(2):307-313.DOI:10.19678/j.issn.1000-3428.0057019.
- [8] WU W H,GAO L,DUAN H H,et al.Segmentation of pulmonary nodules in CT images based on 3D-UNET combined with three-dimensional conditional random field optimization[J].Medical Physics,2020,47(9):4054-4063.DOI:10.1002/mp.14248.
- [9] XIAO Z T,LIU B W ,GENG L,et al.Segmentation of lung nodules using improved 3D-UNet neural network[J].Symmetry,2020,12(11):1787.DOI:10.3390/sym12111787.
- [10] 王雪.基于U-Net多尺度和多维度特征融合的皮肤病变分割方法[J].吉林大学学报(理学版),2021,59(1):123-127.DOI:10.13413/j.cnki.jdxblxb.2020178.
- [11] 伍长荣,接标,叶明全.CT图像肺结节计算机辅助检测与诊断技术研究综述[J].数据采集与处理,2016,31(5):868-881.DOI:10.16337/j.1004-9037.2016.05.003.
- [12] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway:IEEE,2016:770-778.DOI:10.1109/CVPR.2016.90.
- [13] 邓文轩,杨航,靳婷.基于注意力机制的图像分类降维方法[J].广西师范大学学报(自然科学版),2021,39(2):32-40.DOI:10.16088/j.issn.1001-6600.2020090704.
- [14] WANG Q L,WU B G,ZHU P F,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway:IEEE,2020:11531-11539.
- [15] SANDLER M,HOWARD A,ZHU M L,et al.MobileNetV2:Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2018:4510-4520.DOI:10.1109/CVPR.2018.00474.
- [16] 徐学良.人工神经网络的发展及现状[J].微电子学,2017,47(2):239-242.DOI:10.13911/j.cnki.1004-3365.2017.02.022.
- [17] LIU Y C,TAN D S,CHEN J C,et al.Segmenting hepatic lesions using residual attention U-Net with an adaptive weighted dice loss[C]// 2019 IEEE Conference on Image Processing(ICIP).Piscataway:IEEE,2019:3322-3326.DOI:10.1109/ICIP.2019.8803471.
- [18] KINGMA D P,BA J.Adam:a method for stochastic optimizatio[EB/OL].(2015-07-23)[2021-07-12].https://arxiv.org/abs/1412.6980v8.DOI:10.48550/arXiv.1412.6980.
- [19] ZHOU Z W,SIDDIQUEE M M R,TAJBAKHSH N,et al.UNet++:a nested U-Net architecture for medical image segmentation[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Cham:Springer,2018:3-11.DOI:10.1007/978-3-030-00889-5_1.