非线性平均增长率的离散Logistic方程的全局吸引性GLOBAL ATTRACTIVITY OF A LOGISTIC EQUATION WITH NONLINEAR AVERAGE GROWTH
王金华,向红军,邓国和
摘要(Abstract):
研究一类非线性 Logistic方程 :xn+ 1=xnexp[rn(1 -axn-bx2n) ],n=0 ,1 ,2…的全局吸引性 ,其中 {rn}为一个非负数列 ,a,b>0 ,x0 >0 ,获得了方程的所有解 {xn}收敛于正平衡常数 N=-a+a2 +4 b2 a 的充分条件 ,所得结果推广了已有文献的一些结果 .
关键词(KeyWords): 全局吸引性;正平衡解;非线性;Logistic方程
基金项目(Foundation):
作者(Author): 王金华,向红军,邓国和
参考文献(References):
- [1] QinqinZhang,ZhanZhou.Global attractivity of a non-autonomous discrete logistic model[J].HokkaidoMathJ,2000,29:37—44.
- [2] SoJW-H,YuJS.Global stability in a logistic equation with piecewise constant arguments[J].HokkaidoMathJ,1995,24:269—286.
- [3] MayR M.Biological populations obeying difference equations:stable points,stable cycles and chaos[J].TheoBiol,1975,51:511—524.
- [4] MayR M,OsterG F.Bifurcation and dynamics complexity in simple ecological models[J].AmerNut,1976,110:573—599.
- [5] AgarwalR P.Difference equations and inequalities:Theory,method and applications[M].NewYork:MarcelDekker,1992.23—108.
- [6] GopalasamyK,LadasG.On the oscillation and asymptotic behavior of x(t)=x(t)[a+bx(t-τ)-cx2(t-τ)][J].QuartApplMath,1990,48:433—440