局部遍历随机环境下一个重伸缩过程收敛的结果A Convergence Result of a Rescale Process Within Locally Ergodic Random Environment
胡华;
摘要(Abstract):
考虑一个重伸缩过程(Xη,εt)t≥0,假设{η(x)}x∈Z是由局部遍历性的概率测度分布的,本文研究此过程当ε→0时的极限。证明了在局部遍历性分布条件下,对于R上的二阶连续可微函数f(X)和某个与η独立的齐次扩散函数a(X),这个重伸缩过程依分布με收敛到R上具有无穷小生成元d/dX(a(X)d/dXf(X))的扩散过程。
关键词(KeyWords): 局部遍历性;随机游动;重伸缩过程;无穷小生成元
基金项目(Foundation): 国家自然科学基金资助项目(61063020);; 宁夏自然科学基金资助项目(NZ1050);; 宁夏研究生教育创新计划项目(2010)
作者(Authors): 胡华;
DOI: 10.16088/j.issn.1001-6600.2012.02.024
参考文献(References):
- [1]KOZLOV S M.The method of averaging and walks in inhomogeneous environments[J].Russian Math Surveys,1985,40(2):73-145.
- [2]李勇.一类平移不变无穷粒子反应扩散过程的遍历性[J].数学年刊:A辑,1995,16(2):223-229.
- [3]SIRI P.Asymptotic behaviour of a tagged particle in an inhomogeneous zero-range process[J].Stochastic Process Ap-pl,1998,77(2):139-154.
- [4]GRIGORESCU I.Self-diffusion for Brownian motions with local interaction[J].Ann Probab,1999,27(3):1208-1267.
- [5]周宗林.关于一类非平衡交互作用粒子系统的相变[J].数学年刊:A辑,1996,17(3):301-310.
- [6]王子亭.随机介质中扩散过程的尺度跃迁[J].数学的实践与认识,2001,31(5):550-555.
- [7]ANSHELEVICH V V,KHANIN K M,SINAI Y G.Symmetric random walks in random environments[J].CommMath Phys,1982,85(3):449-470.
- [8]KUNNEMANN R.The diffusion limit for reversible jump processes on Zd with ergodic random bond conductivities[J].Comm Math Phys,1983,90(1):27-68.
- [9]De MASI A,FERRARI P A,GOLDSTEIN S,et al.An invariance principle for reversible Markov processes.Applica-tions to random motions in random environments[J].J Statist Phys,1989,55(3/4):787-855.
- [10]KIPNIS C,VARADHAN S R S.Central limit theorem for additive functionals of reversible Markov processes andapplications to simple exclusions[J].Comm Math Phys,1986,104(1):1-19.
- [11]STROOCK D W,ZHENG Wei-an.Markov chain approximations to symmetric diffusions[J].Ann Inst HenriPoincare:Probab Statist,1997,33(5):619-649.
- [12]FABES E,STROOCK D W.The De Giorgi-Moser Harnack principle via the old ideas of Nash[J].Arch RationalMech Anal,1987,96(4):327-338.
- [13]CARLEN E,KUSUOKA S,STROOCK D W.Upper bounds for symmetric Markov transition functions[J].Ann InstHenri Poincare:Probab Statist,1987,23(2):245-287.