带p-Laplacian算子的时滞分数阶微分方程边值问题3个正解的存在性Existence of Three Positive Solutions for Fractional Differential Equation of Boundary Value Problem with p-Laplacian Operator and Delay
闫荣君;韦煜明;冯春华;
摘要(Abstract):
本文研究一类带p-Laplacian算子的分数阶时滞微分方程边值问题正解的存在性,应用Avery-Peterson不动点定理,当非线性项f满足一定增长条件时,得到上述边值问题至少存在3个正解的充分条件,得到一些新的结果,推广了已有的工作。
关键词(KeyWords): 分数阶微分方程;时滞微分方程;边值问题;p-Laplacian算子;Avery-Peterson不动点定理
基金项目(Foundation): 国家自然科学基金(11361010);; 广西自然科学基金(2014GXNSFAA118002);; 广西高等学校高水平创新团队及卓越学者计划;; 广西高等数学与统计模型重点实验室开放基金
作者(Authors): 闫荣君;韦煜明;冯春华;
DOI: 10.16088/j.issn.1001-6600.2017.03.009
参考文献(References):
- [1]LI Nan,WANG Changyou.New existence results of positive solution for a class of nonlinear fractional differential equations[J].Acta Mathematica Scientia,2013,33(3):847-854.DOI:10.1016/S0252-9602(13)60044-2.
- [2]BAI Zhanbing QIU Tingting.Existence of positive solution for singular fractional differential equation[J].Applied Mathematics and Computation,2009,215(7):2761-2767.DOI:10.1016/j.amc.2009.09.017.
- [3]BAI Zhanbing,LHanshen.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].Journal of Mathematical Analysis and Applications,2005,311(2):495-505.DOI:10.1016/j.jmaa.2005.02.052.
- [4]ARARA A,BENCHOHRA M,HAMIDI N.Fractional order differential equations on an unbounded domain[J].Nonlinear Analysis:Theory,Methods and Applications,2010,72(2):580-586.DOI:10.1016/j.na.2009.06.106.
- [5]SU Xinwei,ZHANG Shuqing.Unbounded solutions to a boundary value problem of fractional order on the half-line[J].Computers and Mathematics with Applications,2011,61(4):1079-1087.DOI:10.1016/j.camwa.2010.12.058.
- [6]SU Xinwei.Solutions to boundary value problem of fractional order on unbounded domains in Banach space[J].Nonlinear Analysis:Theory,Method and Applications,2011,74(8):2844-2852.DOI:10.1016/j.na.2011.01.006.
- [7]WEI Yuming,WONG P J Y,GE Weigao.The existence of multiple positive solutions to boundary value problems of nonlinear delay differential equations with countably many singularities on infinite interval[J].Journal of Computers and Applied Mathematics,2010,233(9):2189-2199.DOI:10.1016/j.cam.2009.10.005.
- [8]吴炳华.一类分数阶微分方程正解的存在性[J].兰州理工大学学报,2011,37(2):146-149.DOI:10.13295/j.cnki.jlut.2011.02.005.
- [9]杨军,李亚.一类无穷域上高分数阶微分方程正解的存在性[J].兰州理工大学学报,2014,40(4):155-158.DOI:10.13295/j.cnki.jlut.2014.04.005.
- [10]郑祖麻.分数微分方程的发展和应用[J].徐州师范大学学报(自然科学版),2008,26(2):1-10.DOI:10.3969/j.issn.1007-6573.2008.02.001.
- [11]ZHAO Xiangkui,GE Weigao.Unbounded solutions for a fractional boundary value problems on the infinite interval[J].Acta Applicandae Mathematicae,2010,109(2):495-505.DOI:10.1007/s10440-008-9329-9.
- [12]CHEN Taiyong,LIU Wenbin,HU Zhigang.A boundary value problem for fractional differential equation with pLaplacian operator at resonance[J].Nonlinear Analysis:Theory,Methods and Applications,2012,75(6):3210-3217.DOI:10.1016/j.na.2011.12.020.
- [13]HAN Zhenlai,LI Yanan,SUI Meizhen.Existence results for boundary value problems of fractional functional differential equations with delay[J].Journal of Applied Mathematics and Computing,2016,51(1):367-381.DOI:10.1007/s12190-015-0910-x.
- [14]白占冰.分数阶微分方程边值问题理论及其应用[M].北京:科学出版社,2012:44-45.
- [15]葛渭高.非线性常微分方程边值问题[M].北京:科学出版社,2007:63-64.