基于多步态特征融合的情感识别Emotion Recognition Based on Multi-gait Feature Fusion
彭涛;唐经;何凯;胡新荣;刘军平;何儒汉;
摘要(Abstract):
在情感计算、心理治疗、机器人、监视和观众理解等方面,基于步态特征的情感识别有着广泛的应用前景。已有方法表明,考虑手势位置等上下文信息可以显著提高情绪识别性能,且时空信息能显著提高情绪识别精度。但是单纯使用骨骼空间信息无法充分表达步态中的情绪信息。为了充分利用步态特征,本文提出自适应融合的方法,将骨骼时空信息与骨骼旋转角度结合,提升了现有模型的情感识别精度。本文模型利用自编码器,学习人类行走时的骨骼旋转信息,利用时空图卷积神经网络提取骨骼点时空信息,将骨骼旋转信息与时空信息输入自适应融合网络,得到最终特征进行分类。模型在Emotion-Gait数据集上测试,实验结果显示:悲伤、愤怒和中立情绪的AP值比最新HAP方法分别提升5、8、5个百分点;总体分类的平均MAP值提高了5个百分点。
关键词(KeyWords): 步态特征;时空图卷积神经网络;特征融合;情感识别;自编码器
基金项目(Foundation): 国家自然科学基金(61901308)
作者(Authors): 彭涛;唐经;何凯;胡新荣;刘军平;何儒汉;
DOI: 10.16088/j.issn.1001-6600.2021071406
参考文献(References):
- [1] SCHURGIN M W,NELSON J,LIDA S.et al.Eye movements during emotion recognition in faces[J].Journal of Vision,2014,14(13):14.DOI:10.1167/14.13.14.
- [2] KLEINSMITH A,BIANCHI-BERTHOUZE N.Affective body expression perception and recognition:a survey[J].IEEE Transactions on Affective Computing,2013,4(1):15-33.DOI:10.1109/T-AFFC.2012.16.
- [3] 苏文瑛.基于三维人体运动数据的情感识别[D].天津:天津大学,2012.DOI:10.7666/d.D323840.
- [4] BHATTACHARYA U,MITTAL T,CHANDRA R,et al.STEP:spatial temporal graph convolutional networks for emotion perception from gaits[J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(2):1342-1350.DOI:10.1609/aaai.v34i02.5490.
- [5] MONTEPARE J M,GOLDSTEIN S B,CLAUSEN A.The identification of emotions from gait information[J].Journal of Nonverbal Behavior,1987,11(1):33-42.DOI:10.1007/BF00999605.
- [6] MEEREN H K M,VAN HEIJNSBERGEN C C R J,DE GELDER B.Rapid perceptual integration of facial expression and emotional body language[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(45):16518-16523.DOI:10.1073/pnas.0507650102.
- [7] MICHALAK J,TROJE N F,FISCHER J,et al.Embodiment of sadness and depression - gait patterns associated with dysphoric mood[J].Psychosomatic Medicine,2009,71(5):580-587.DOI:10.1097/PSY.0b013e3181a2515c.
- [8] DENG J,DONG W,SOCHER R,et al.Imagenet:a large-scale hierarchical image database[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2009:248-255.DOI:10.1109/CVPR.2009.5206848.
- [9] 常亮,邓小明,周明全,等.图像理解中的卷积神经网络[J].自动化学报,2016,42(9):1300-1312.DOI:10.16383/j.aas.2016.c150800.
- [10] RANDHAVANE T,BHATTACHARYA U,KAPSASKIS K,et al.Identifying emotions from walking using affective and deep features[EB/OL].(2020-01-09)[2021-07-14].https://arxiv.org/pdf/1906.11884.
- [11] BHATTACHARYA U,RONCAL C,MITTAL T,et al.Take an emotion walk:perceiving emotions from gaits using hierarchical attention pooling and affective mapping[C]// Computer Vision-ECCV 2020:Lecture Notes in Computer Science Vol 12355.Cham:Springer,2020:145-163.DOI:10.1007/978-3-030-58607-2_9.
- [12] YAN S J,XIONG Y J,LIN D H.Spatial temporal graph convolutional networks for skeleton-based action recognition[C]// Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI Press,2018:7444-7452.
- [13] 李卫.深度学习在图像识别中的研究及应用[D].武汉:武汉理工大学,2014.DOI:10.7666/d.D617675.
- [14] 李彦冬,郝宗波,雷航.卷积神经网络研究综述[J].计算机应用,2016,36(9):2508-2515,2565.DOI:10.11772/j.issn.1001-9081.2016.09.2508.
- [15] 许可.卷积神经网络在图像识别上的应用的研究[D].杭州:浙江大学,2012.
- [16] 高静静,张菁,沈兰荪.视觉注意力模型的改进算法[J].电子测量技术,2008,31(3):1-3,10.DOI:10.19651/j.cnki.emt.2008.03.001.
- [17] 张杰,魏维.基于视觉注意力模型的显著性提取[J].计算机技术与发展,2010,20(11):109-113.DOI:10.3969/j.issn.1673-629X.2010.11.027.
- [18] LEE J Y,KIM S Y,KIM S N,et al.Context-aware emotion recognition networks[C]// 2019 IEEE/CVF International Conference on Computer Vision(ICCV).Los Alamitos,CA:IEEE Computer Society,2019:10142-10151.DOI:10.1109/ ICCV.2019.01024.
- [19] CHEN C,WU Z X,JIANG Y G.Emotion in context:deep semantic feature fusion for video emotion recognition[C]// Proceedings of the 24th ACM International Conference on Multimedia.New York,NY:ACM Press,2016:127-131.DOI:10.1145/2964284.2967196.
- [20] 张卡,张道俊,盛业华,等.三维坐标转换的两种方法及其比较研究[J].数学的实践与认识,2008,38(23):121-128.
- [21] 敖道敢.无监督特征学习结合神经网络应用于图像识别[D].广州:华南理工大学,2014.
- [22] MA Y L,PATERSON H M,POLLICK F E.A motion capture library for the study of identity,gender,and emotion perception from biological motion[J].Behavior Research Methods,2006,38(1):134-141.DOI:10.3758/BF03192758.
- [23] IONESCU C,PAPAVA D,OLARU V,et al.Human3.6M:large scale datasets and predictive methods for 3D human sensing in natural environments[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(7):1325-1339.DOI:10.1109/TPAMI.2013.248.
- [24] NARANG S,BEST A,FENG A,et al.Motion recognition of self and others on realistic 3D avatars[J].Computer Animation and Virtual Worlds,2017,28(3/4):e1762.DOI:10.1002/cav.1762.
- [25] CMU Graphics Lab.CMU graphics lab motion capture database[DS/OL].Pittsburgh,PA:CMU Graphics Lab,2018[2021-07-14].http://mocap.cs.cmu.edu.
- [26] SHI L,ZHANG Y F,CHENG J,et al.Skeleton-based action recognition with directed graph neural networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Los Alamitos,CA:IEEE Computer Society,2019:7904-7913.DOI:10.1109/CVPR.2019.00810.
- [27] LIU Z Y,ZHANG H W,CHEN Z H,et al.Disentangling and unifying graph convolutions for skeleton-based action recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Los Alamitos,CA:IEEE Computer Society,2020:140-149.DOI:10.1109/CVPR42600.2020.00022.
- [28] MEHRABIAN A,RUSSELL J A.An approach to environmental psychology[M].Cambridge,MA:MIT Press,1974.
- [29] 曹田熠.多模态融合的情感识别研究[D].天津:天津大学,2012.DOI:10.7666/d.D323808.
- [30] 陈文兵,管正雄,陈允杰.基于条件生成式对抗网络的数据增强方法[J].计算机应用,2018,38(11):3305-3311.DOI:10.11772/j.issn.1001-9081.2018051008.