一类时滞脉冲微积分方程的正概周期解Positive Almost Periodic Solutions for a Class of Integro-differential Equation with Impulses and Infinite Delays
薛晋栋;冯春华;
摘要(Abstract):
本文利用指数二分性理论及不动点定理,研究一类无穷时滞脉冲微分积分方程的正概周期解的存在性,得出保证方程存在正概周期解的一组充分条件,推广了相关文献的主要结论。
关键词(KeyWords): 指数二分性;不动点定理;概周期解;脉冲;时滞
基金项目(Foundation): 国家自然科学基金资助项目(10961005)
作者(Authors): 薛晋栋;冯春华;
DOI: 10.16088/j.issn.1001-6600.2012.04.020
参考文献(References):
- [1]何崇佑.概周期微分方程[M].北京:高等教育出版社,1992.
- [2]唐再良.关于Nicholson's blowflies模型周期正解的存在性[J].绵阳师范学院学报,2005,24(5):13-16.
- [3]张曙光,范志勇.Nicholson's blowflies泛函微分方程两个正周期解的存在性[J].湘潭大学自然科学学报,2012,34(1):11-15.
- [4]LIU Bing-wen.Global stalility of a class of Nicholson's blowflies model with patch structure and multiple time-varying delays[J].Nonlinear Analysis:Real World Applications,2010,11(4):2557-2562.
- [5]ZHOU Hua,WANG Wen-tao,ZHANG Hong.Convergence for a class of non-autonomous Nicholson's blowfliesmodel with time-varying coefficients and delays[J].Nonlinear Analysis:Real World Applications,2010,11(5):3431-3436.
- [6]BEREZANSKY L,BRAVERMAN E,IDELS L.Nicholson's blowflies model differential equations revisited:mainresults and open problems[J].Applied Mathematical Modelling,2010,34(6):1405-1417.
- [7]CHEN Wei,LIU Bing-wen.Positive almost periodic solution for a class of Nicholson's blowflies model with multipletime-varying delays[J].Journal of Computational and Applied Mathematics,2011,235(8):2090-2097.
- [8]冯秋香,燕居让.一类Nicholson's blowflies模型的全局吸引性和振动性[J].生物数学学报,2002,17(1):21-26.
- [9]具反馈控制的Nicholson's blowflies模型的概周期解[J].福州大学学报:自然科学版,2010,38(4):481-485.
- [10]STAMOV G T.On the existence of almost periodic solutions for the impulsive Lasota-Wazewska model[J].AppliedMathematics Letters,2009,22(4):516-520.
- [11]SAMOILENKO A M,PERESTYUK N A.Differential equations with impulse effect[M].Kiev:Visca Skola,1987.
- [12]DEIMLING K.Nonlinear functional analysis[M].New York:Springer,1985.
- [13]STAMOV G T.Impulsive cellular neural networks and almost periodicity[J].Proc Japan Acad Ser A Math Sci,2004,80(10):198-203.
- [14]林远华,冯春华.一类无穷时滞脉冲微分积分方程的概周期解[J].梧州学院学报,2009,19(3):1-9.