一种基于局部HOG特征的运动车辆检测方法New Method of Moving Vehicle Detection Based on Partial HOG Feature
李子彦;刘伟铭;
摘要(Abstract):
在平均车头时距较小的交通拥挤情景中,针对传统的基于截取完整车辆作为待检区域的方向梯度直方图(HOG)特征匹配方法较难取得准确的待检区域及其漏检率与误检率较高等问题,本文提出一种基于局部HOG特征提取及识别方法。首先采用中值滤波的方式对图像进行预处理,然后在图像中选取特定区域并设置一条虚拟检测线,将此检测线作为感兴趣区域(ROI)来提取灰度图像的局部HOG特征向量,最后采用支持向量机(SVM)对局部HOG特征向量进行模型训练,以及对车辆处于检测线和离开检测线这2种状态进行分类和计数。针对支持向量机的输出结果存在噪声点的问题,使用检测队列和二次确认模块相结合的方法进行过滤,且在选取训练样本时利用车尾阴影来提高检测的灵敏度。该方法与传统的基于车辆整体外观的HOG特征检测方法及其他车辆计数方法相比,具有检测率高、实时性强、灵敏度高的特点,尤其在平均车头时距较小的交通拥挤状况中,检测效果明显优于其他方法。
关键词(KeyWords): 虚拟检测线;局部方向梯度直方图特征;支持向量机;车辆检测
基金项目(Foundation): “十三五”国家重点研发计划先进轨道交通重点专项(2016YFB1200402-07)
作者(Authors): 李子彦;刘伟铭;
DOI: 10.16088/j.issn.1001-6600.2017.03.001
参考文献(References):
- [1]梁俊斌,徐建闽.基于感应线圈的骑线车辆检测方法[J].华南理工大学学报(自然科学版),2007,35(7):20-24.DOI:10.3321/j.issn:1000-565x.2007.07.005.
- [2]张浩,薛伟,余稳,等.一种应用于毫米波车流量检测雷达的背景功率谱识别方法[J].红外与毫米波学报,2008,27(6):437-441.DOI:10.3321/j.issn:1001-9014.2008.06.010.
- [3]XIONG Changzhen,FAN Wuyi,LI Zhengxi.Traffic flow detection algorithm based on intensity curve of highresolution image[C]//2010 2nd International Conference on Computer Modeling and Simulation:Volume 3.Piscataway,NJ:IEEE Press,2010:159-162.DOI:10.1109/ICCMS.2010.405.
- [4]MARIN D,AQUINO A,GEGUNDEZ-ARIAS M E,et al.A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features[J].IEEE Transactions on Medical Imaging,2011,30(1):146-158.DOI:10.1109/TMI.2010.2064333.
- [5]HAN B,DAVIS L S.Density-based multifeature background subtraction with support vector machine[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(5):1017-1023.DOI:10.1109/TPAMI.2011.243.
- [6]DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society,2005:886-893.DOI:10.1109/CVPR.2005.177.
- [7]CHENG Li,GONG Minglun,SCHUURMANS D,et al.Real-time discriminative background subtraction[J].IEEE Transactions on Image Processing,2011,20(5):1401-1414.DOI:10.1109/TIP.2010.2087764.
- [8]BARNICH O,Van DROOGENBROECK M.ViBe:a universal background subtraction algorithm for video sequences[J].IEEE Transactions on Image Processing,2011,20(6):1709-1724.DOI:10.1109/TIP.2010.2101613.
- [9]刘操,郑宏,黎曦,等.基于多通道融合HOG特征的全天候运动车辆检测方法[J].武汉大学学报(信息科学版),2015,40(8):1048-1053.DOI:10.13203/j.whugis20130341.
- [10]蒋新华,高晟,廖律超,等.半监督SVM分类算法的交通视频车辆检测方法[J].智能系统学报,2015,10(5):690-698.DOI:10.11992/tis.201406044.
- [11]王讯峰.基于视觉的前方车辆检测算法的研究[D].广州:华南理工大学,2014.
- [12]张生瑞.交通流理论与方法[M].北京:中国铁道出版社,2010.
- [13]LOY C C,GONG Shaogang,XIANG Tao.From semi-supervised to transfer counting of crowds[C]//2013IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE Press,2013:2256-2263.DOI:10.1109/ICCV.2013.270.
- [14]LEIBE B,CORNELIS N,CORNELIS K,et al.Dynamic 3Dscene analysis from a moving vehicle[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2007:1-8.DOI:10.1109/CVPR.2007.383146.
- [15]LIU Xu,WANG Zilei,FENG Jiashi,et al.Highway vehicle counting in compressed domain[C]//2016IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society,2016:3016-3024.DOI:10.1109/CVPR.2016.329.
- [16]边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000.
- [17]SCHULTER S,LEISTNER C,WOHLHART P,et al.Accurate object detection with joint classification-regression random forests[C]//2014IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society,2014:923-930.DOI:10.1109/CVPR.2014.123.
- [18]汪启伟.图像直方图特征及其应用研究[D].合肥:中国科学技术大学,2014.
- [19]周志华.机器学习[M].北京:清华大学出版社,2016.