基于联合直方图的红外与可见光目标融合跟踪Tracking Infrared-visible Target with Joint Histogram
蔡冰;张灿龙;李志欣;
摘要(Abstract):
针对传统单核跟踪算法只能单独跟踪红外或可见光运动目标,导致目标的跟踪效果不是很理想,甚至跟踪失败的问题,本文提出了一种基于均值漂移的红外与可见光目标融合跟踪算法。该算法仍以直方图为目标表示模型,通过将红外目标的相似度和可见光目标的相似度进行加权融合,来构建新的目标函数,并依据核跟踪推理机制导出目标的联动位移公式;最后使用均值漂移程序实现目标的自动搜索。多个视频序列对的测试结果表明,本文提出的融合跟踪方法在处理场景拥簇、光照变化等方面要优于传统的单源跟踪方法,同时具有较高的实时性。
关键词(KeyWords): 均值漂移;直方图;融合跟踪;红外与可见光;相似度
基金项目(Foundation): 国家自然科学基金(61365009,61462008,61663004);; 广西自然科学基金(2014GXNSFAA118368,2013GXNSFAA019336,2016GXNSFAA380146);; 广西师范大学博士科研启动基金(师政科技[2015]13号);; 广西信息科学实验室中心经费资助课题
作者(Authors): 蔡冰;张灿龙;李志欣;
DOI: 10.16088/j.issn.1001-6600.2017.03.005
参考文献(References):
- [1]COMANICIU D,RAMESH V,MEER P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.DOI:10.1109/TPAMI.2003.1195991.
- [2]WU Yi,LIM J,YANG M H.Online object tracking:a benchmark[C]//IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE Computer Society,2013:2411-2418.DOI:10.1109/CVPR.2013.312.
- [3]ZHANG Weizheng,JI Jiangao,JING Zhongzhao,et al.Adaptive real-time compressive tracking[C]//International Conference on Network and Information Systems for Computers.Piscataway,NJ:IEEE Press,2015:236-240.DOI:10.1109/ICNISC.2015.152.
- [4]齐苑辰,吴成东,陈东岳,等.基于稀疏表达的超像素跟踪算法[J].电子与信息学报,2015,37(3):529-535.DOI:10.11999/JEIT140374.
- [5]LEICHTER I.Mean Shift Trackers with cross-bin metrics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(4):695-706.DOI:10.1109/TPAMI.2011.167.
- [6]张灿龙,唐艳平,李志欣,等.基于二阶空间直方图的双核跟踪[J].电子与信息学报,2015,37(7):1660-1666.DOI:10.11999/JEIT141321.
- [7]ZHANG Shunli,SUI Yao,YU Xin,et al.Hybrid support vector machines for robust object tracking[J].Pattern Recognition,2015,48(8):2474-2488.DOI:10.1016/j.patcog.2015.02.008.
- [8]ZHANG Kaihua,SONG Huihui.Real-time visual tracking via online weighted multiple instance learning[J].Pattern Recognition,2013,46(1):397-411.DOI:10.1016/j.patcog.2012.07.013.
- [9]刘哲,陈恳,郑紫微.基于HOG与多实例在线学习的目标跟踪算法[J].计算机工程,2015,41(1):158-163.DOI:10.3969/j.issn.1000-3428.2015.01.029.
- [10]ROSS D A,LIM J,LIN R S,et al.Incremental learning for robust visual tracking[J].International Journal of Computer Vision,2008,77(1/2/3):125-141.DOI:10.1007/s11263-007-0075-7.
- [11]MEI Xue,LING Haibin.Robust visual tracking using1 minimization[C]//IEEE 12th International Conference on Computer Vision.Piscataway,NJ:IEEE Press,2009:1436-1443.DOI:10.1109/ICCV.2009.5459292.
- [12]LIU Huaping,SUN Fuchun.Fusion tracking in color and infrared images using joint sparse representation[J].Science China Information Sciences,2012,55(3):590-599.DOI:10.1007/s11432-011-4536-9.
- [13]赵高鹏,薄煜明,陈益.多特征提取的红外和可见光目标跟踪方法[J].兵工学报,2011,32(4):445-451.
- [14]YUN Xiao,JING Zhongliang,XIAO Gang,et al.A compressive tracking based on time-space Kalman fusion model[J].Science China Information Sciences,2016,59(1):1-15.DOI:10.1007/s11432-015-5356-0.
- [15]LIU Yanjun,TONG Shaocheng,CHEN C L P.Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics[J].IEEE Transactions on Fuzzy Systems,2013,21(2):275-288.DOI:10.1109/TFUZZ.2012.2212200.
- [16]XIAO Gang,YUN Xiao,WU Jianmin.A multi-cue mean-shift target tracking approach based on fuzzified region dynamic image fusion[J].Science China Information Sciences,2012,55(3):577-589.DOI:10.1007/s11432-012-4553-3.